

模拟行为仿真概念

- 基于行为模型的增益控制实现
- 基于行为模型的调幅实现
- 基于行为模型的滤波器实现
- 基于行为模型的压控振荡器实现

- Spice的模拟行为提供设计者一个简单的方式,用于仿真一块 尚未完成或是极复杂的子电路。
- 设计者可以自行定义或使用Spice内已经建好的模拟行为元件 ,它运用描述电路特性的方式,而不需要以真实电路来输入和 仿真。
- 可以大大简化仿真的时间及复杂度。

电子线路设计中最重要问题是,如何对其进行系统级建模。

- 首先,通过对电子线路所建立的系统模型,从理论上进行分析可行性。
- □然后,考虑如何进行具体的实现。

在实现基于行为模型的系统建模前,将下面的库,添

加到库管理器中:

- 基于行为模型的增益控制实现 --建立新的行为模型增益控制工程
- 在Windows7操作系统主界面的左下角下,选择开始-> Altium Designer,打开Altium Designer15.0软件。
- 在Altium Designer主界面主菜单下选择New->Project。
- 在New Project对话框界面中,选择PCB Project工程,创建 一个名字为PCB_Project1.PrjPCB的新工程。
- 添加名字为Sheet1.SchDoc的原理图文件。

从Miscellaneous Devices.IntLib库、Simulation Pspice Functions.IntLib库中找到下列元件。并将其按照下图所示的 位置进行放置。

单击Altium Designer主界面下的工具栏内的连线按钮,将这些元器件和信号源按照下图所示的方式进行连接。

- 为电路中的元件和信号源分配唯一的标识符。
- 下图给出分配完标识符后的原理图界面。

双击V1信号源图标,打开其属性对话框界面。如下图所示,按 如下设置参数:

- □ Offset (偏置) : 0 ;
- □ Amplitude (幅度):1;

□ Frquency (频率):10Hz。

Offset	0	
Amplitude	1	V
Frequency	10	

■ 选择 Global Parameters Setup。按下面参数设置:

- **Parmeter : GAIN**。
- □ Value:2。

Global Parameters Setup					
Parameter Value					
GAIN	2				

■ 双击EVALUE图标。

打开属性设置对话框界面,在该界面的下方单击 Edit...按钮。

Models					
Name		Type 🛛 🗠	Description	Vault	Item Revis
EVALUE	Ŧ	Simulation	EVALUE		
A <u>d</u> d ▼		Re <u>m</u> ove	Edit		

基于行为模型的增益控制实现 --设置EVALUE参数

在配置Sim Model模型中,选择Parameters标签,在EXPR-行按下面设置参数:

□ 将Value修改为ABS(V(%1,%2)*GAIN。

□ 选中Component Parameter复选框。

Sim Model - General / Generic Editor						
Model Kind Parameters Port Map						
Model Parameters	·					
Name	Value	Туре	Component Parameter			
Published	31-Jul-2006	String	✓			
DatasheetVersion	9.2.3	String	✓			
PackageReference	Not Applicable	String	✓			
Note	PCB Footprint - Not required	Strina				
EXPR	ABS(V(%1,%2))*GAIN	String				

■ 单击OK按钮,退出EVALUE配置界面。

为了方便分析仿真结果,按下图所示的电路,在输入和输出端分 别分别放置名字为IN和OUT的网络标号。

保存设计文件,将其保存到gain_control_analysis目录下。

基于行为模型的增益控制实现 --设置增益控制行为仿真参数

在Altium Designer主界面主菜单下选择Design->Simulate->Mixed Sim。

■ 打开Analyses Setup(分析设置)界面。 按下面参数设置:

Analyses Setup	×
Analyses/Options Enabled General Setup Collect Data For Operating Point Analysis Image: Sheets to Netlist Transient Analysis Image: Sheets to Netlist DC Sweep Analysis Image: Sheets to Netlist Active Signals Image: Sheets to Netlist DC Sweep Analysis Image: Sheets to Netlist Active Setup Image: Sheets to Netlist Noise Analysis Image: Sheets to Netlist Pole-Zero Analysis Image: Sheets to Netlist Transfer Function Analysis Image: Sheets to Netlist Transfer Function Analysis Image: Sheets to Netlist Parameter Sweep Image: Sheets to Netlist Monte Carlo Analysis Image: Sheets to Netlist Global Parameters Image: Sheets to Netlist Advanced Options Image: Sheets to Netlist	•
Preferences OK Cance	el

基于行为模型的增益控制实现 --仿真结果分析

Copyright © 2009 Altium Limited

基于行为模型的调幅实现 --建立新的行为模型AM工程

- 在Windows7操作系统主界面的左下角下,选择开始— >Altium Designer,打开Altium Designer 15.0软件。
- 在Altium Designer主界面主菜单下选择New->Project。
- 在New Project对话框界面中,选择PCB Project选项,创建一 个名字为PCB_Project1.PrjPCB的新工程
- 添加名字为Sheet1.SchDoc的原理图文件。

Miscellaneous Devices.IntLib库、Simulation Pspice Functions.IntLib库中分别找如下元件,并将其按照下图所示 的位置进行放置。

单击Altium Designer主界面下的工具栏内的连线按钮,将这些元器件和信号源按照下图所示的方式进行连接。

为电路中的元件和信号源分配唯一的标识符。下图给出分配完 标识符后的原理图界面。

设置V1按如下参数,在输入和输出端分别分别放置名字为IN1 、INT2和OUT的网络标号。

- 将V1按如下参数设置:
 - □ Offset (偏置) : 0 ;
 - □ Amplitude (幅度) : 0.3V ;
 - □ Frquency(频率):1KHz。
- 将V2按如下参数设置:
 - □ Offset (偏置) : 0 ;
 - □ Amplitude (幅度):1V;
 - □ Frquency(频率):100kHz。

基于行为模型的调幅实现 --设置AM行为仿真参数

在Altium Designer主界面主菜单下选择Design->Simulate->Mixed Sim。

打开Analyses Setup (分析设置)界面。按下面设置参数:

Analyses Setup							? <mark>×</mark>
Analyses/Options General Setup Operating Point Analysis Transient Analysis DC Sweep Analysis AC Small Signal Analysis	Enabled	Collect Data Fo Sheets to Netlist SimView Setup	Active Signals Active project Keep last setup		•]		•
Noise Analysis Pole-Zero Analysis Transfer Function Analysis Temperature Sweep Parameter Sweep Monte Carlo Analysis Global Parameters Advanced Options		Avail E1[p] R1[i] R1[p] V1#branch V1[p] V1[z] V2#branch	lable Signals	* * * * * * * * * * * * * * * * * * *	IN1 IN2 OUT	Active Signals	
Preferences						ОК	Cancel

基于行为模型的调幅实现

选择Transient Analysis选项,出现Transient Analysis Setup(瞬态分析设置)界面。按下面设置参数:

Analyses Setup

Analyses/Options	Enabled	*	Transient Analysis Setup		*
General Setup			Parameter	Value	
Operating Point Analysis	✓		Transient Start Time	0.000	
Transient Analysis	 Image: A start of the start of		Transient Stop Time	5.000m	E.
DC Sweep Analysis AC Small Signal Analysis			Transient Step Time	200.0n	
Noise Analysis		Ξ	Transient Max Step Time	200.0n	-
Pole-Zero Analysis			Use Initial Conditions		
Transfer Function Analysis					
Temperature Sweep			Use Transient Defaults		
Parameter Sweep			Default Cycles Displayed	5	-
Monte Carlo Analysis			Perdan cycles orsprayed	-	
Global Parameters				Set <u>D</u> efaults	
Advanced Options		Ŧ			^
Preferences				OK Cancel	

?

X

基于行为模型的调幅实现 --分析AM行为仿真结果

- 运行SPICE仿真后,弹出消息对话框。关闭该对话框界面。
- 自动打开PCB_Project1.sdf文件。在该文件下,单击 Transient Analysis标签。
- 在该界面中,分别添加IN1、IN2和OUT波形。

基于行为模型的调幅实现 --分析AM行为仿真结果

- 基于行为模型的滤波器实现 --建立新的滤波器行为模型工程
 - 在Windows7操作系统主界面的左下角下,选择开始—
 - >Altium Designer, 打开Altium Designer 15.0软件。
 - 在Altium Designer主界面主菜单下选择New->Project。
 - 在New Project对话框界面中,选择PCB Project选项,创建 一个名字为PCB_Project1.PrjPCB的新工程。
 - 添加名字为Sheet1.SchDoc的原理图文件。

基于行为模型的滤波器实现 --构建滤波器行为模型

■ 从Miscellaneous Devices.IntLib库中找到下列元件。并将其

按照下图所示的位置进行放置。

基于行为模型的滤波器实现 --构建滤波器行为模型

单击Altium Designer主界面下的工具栏内的连线按钮,将这些元器件和信号源按照下图所示的方式进行连接。

基于行为模型的滤波器实现 --构建滤波器行为模型

为电路中的元件和信号源分配唯一的标识符。下图给出分配完标识符后的原理图界面。

基于行为模型的滤波器实现 --设置SXFERR的传输函数表达式

- 本设计给出的一个4阶巴特沃兹低通滤波器输入到 denormalized_freq的参数,将转折频率设置为3kHz (来自量化的1rad/s。或者159mHz),量化的传输函
- 数表示为:

G(S)=1/(1S4+2.6131S3+3.4142S2+2.6131S+1)

基于行为模型的滤波器实现 --设置SXFERR的传输函数表达式

双击上图内的SXFERR,打开其属性对话框界面。 在配置界面下方,单击Edit...按钮。

出现SXFERR传输函数参数配置界面。在该界面下按如下设置:

Sim Model	- General / Generic Ed	litor		6	? 💌
Model Kind	Parameters Port Map				
Model Para	ameters				
Name		Value	Туре	Component Parameter	
Published		11Jul-2000	String	\checkmark	
LatestRev	risionDate	17-Jul-2002	String	\checkmark	
LatestRevi	isionNote	Re-released for DXP Platform.	String	✓	
PackageR	leference	Not Applicable	String	\checkmark	
Publisher		Altium Limited	String	\checkmark	
Note		Single input, single output transfer function in the Laplace t	String		
Sim Note		Enter the numerator coefficients in num_coeff and the den	String		
in_offset			String		
gain			String		
num_coeff	f	1	String		
den_coeff		1 2.6131 3.4142 2.6131 1	String		
int_ic		00000	String		
denormaliz	zed_freq	18849.5559	String		

Delete

Add

基于行为模型的滤波器实现 --设置滤波器行为仿真参数

在Altium Designer主界面主菜单下选择Design->Simulate->Mixed Sim。

■ 打开Analyses Setup(分析设置)界面。按下图设置参数:

Analyses Setup								? 💌
Analyses/Options General Setup Operating Point Analysis Iransient Analysis DC Sweep Analysis AC Smail Signal Analysis Noise Analysis Pole-Zero Analysis Transfer Function Analysis Temperature Sweep Parameter Sweep Monte Carlo Analysis Global Parameters Advanced Options	Enabled	H	Collect Data For Sheets to Netlist SimView Setup Avail R1[i] R1[p] V1#branch V1[p] V1[z]	Active Signals Active project Keep last setup able Signals	>>	▼ ▼ IN OUT	Active Signals	
Preferences							ОК	Cancel

- 基于行为模型的压控振荡器实现 --建立新的压控振荡器行为模型工程
 - 在Windows7操作系统主界面的左下角下,选择开始— >Altium Designer,打开Altium Designer15.0软件。
 - 在Altium Designer主界面主菜单下选择New->Project。
- 在New Project对话框界面中,选择PCB Project选项,创建 一个名字为PCB_Project1.PrjPCB的新工程。
- 添加名字为Sheet1.SchDoc的原理图文件。

- 从Miscellaneous Devices.IntLib库中找到如图所示元件。
- 并将其按照下图所示的位置进行放置。

■ 单击Altium Designer主界面下的工具栏内的连线按钮,将这

些元器件和信号源按照下图所示的方式进行连接。

■ 设置三个全局参数k1、fc和twopi。

Global Parameters Setup						
Parameter Value						
kl		1000000				
fc	1000000					
twopi		6.283				

为了方便对仿真结果进行分析,按图所示的电路,在输入和输出端分别分别放置名字为CTRL、INT和OUT1的网络标号。

双击上图内的V1图标,按下图的参数,设置界面配置分段线性

源。

Sim Model - Voltage Source / Piecewise Linear					
Model Kind Parameter	s Port Map				
			Component parameter		
DC Magnitude	0				
AC Magnitude	1				
AC Phase	0				
Time / Value Pairs					
Time (s)		Voltage	e (V)		
OU		σv		Add	
50		0V			
5.01U		1V		Delete	

双击上图内的G1图标,按下图所示的界面,设置非线性电流源的表达式。

Sim Model - General / Generic Editor					
Model Kind Parameters	Port Map				
Model Parameters					
Name	Value	Туре	Component Parameter		
Published	31-Jul-2006	String	V		
DatasheetVersion	9.2.3	String	✓		
PackageReference	Not Applicable	String	\checkmark		
Note	PCB Footprint - Not required	String	\checkmark		
EXPR	k1*V(%1,%2)×1u	String			

双击图上内的E1图标,按下图所示的界面设置非线性电压源的 表达式。

Sim Model - General / Generic Editor

M	odel Kind Parameters Port Map		
	Model Parameters		
	Name	Value	Туре
	Published	31-Jul-2006	String
	DatasheetVersion	9.2.3	String
	PackageReference	Not Applicable	String
	Note	PCB Footprint - Not required	String
	EXPR	V(%1,%2)+sin(twopi*(fc*time+v(INT)))	String

Altium

- 基于行为模型的压控振荡器实现 --构建压控振荡器行为模型
 - Altium Designer击IC1,将其初始条件设置为0。
 - 按上图设置电路中其它参数。
 - 保存设计文件,将其保存到vco_analysis目录下。

基于行为模型的压控振荡器实现 --设置压控振荡器行为仿真参数

在Altium Designer主界面主菜单下选择Design->Simulate->Mixed Sim。

打开如下图所示的Analyses Setup(分析设置)界面。按下 面设置参数:

Analyses Setup						? 🛃
Analyses/Options General Setup	Enabled	Collect Data For	Active Signals			•
Operating Point Analysis Transient Analysis	>	Sheets to Netlist	Active project	•		
DC Sweep Analysis AC Small Signal Analysis Noise Analysis		Simview Setup	Keep last setup			
Pole-Zero Analysis Transfer Function Analysis		Avail C1[i]	able Signals		Active Signals	
Temperature Sweep Parameter Sweep		C1[p] E1[p] G1[p]	E			
Monte Carlo Analysis Global Parameters		R1[i] R1[p] R2[i]	-	< <<		

基于行为模型的压控振荡器实现

3.选择Transient Analysis。按下面参数设置:

(1) Transient Start Time(瞬态开始时间): 0.000。

Analyses/Ontions	Enabled	Transient Analysis Setun			
General Setup	Endbred	Parameter	· · · ·	Value	
Operating Point Analysis 历史	真结果	Transient Start Time	0.000		
Transient Analysis		Transient Stop Time	10.00u		E
DC Sweep Analysis		Transient Step Time	20.04n		
Noise Analysis		Transient Max Step Time	50.00n		-
Pole-Zero Analysis		Use Initial Conditions		V	1
Transfer Function Analysis					1
Temperature Sweep		Use Transient Defaults			-
Parameter Sweep		Default Cycles Displayed	5		- .
Monte Carlo Analysis		beruari eyeles bispiayea	2		

基于行为模型的压控振荡器实现 --分析压控振荡器行为仿真结果

- 运行SPICE仿真后,弹出消息对话框。关闭该对话框界面。
- 自动打开PCB_Project1.sdf文件。在该文件下,单击 Transient Analysis标签。
- 在该界面中,分别添加INT、CTRL和OUT波形。下图给出了压 控振荡器仿真结果。
- 保存工程文件,将其保存到vco_analysis目录下。

- 何宾老师出版的《Altium Designer 15.0电路仿真、设计、验证与 工艺实现权威指南》一书中所有设计案例源代码、书中所用半导 体器件相关参考手册、书中所用PCB制板工艺设计资料、Altium 提供的元件库封装等设计资源请通过如下地址进行下载
- http://www.gpnewtech.com/download/altium
- 如将本书做为教材需ppt源代码请访问如下地址:
- http://www.gpnewtech.com/ppt

